
Journal of Computational Physics153,488–508 (1999)

Article ID jcph.1999.6291, available online at http://www.idealibrary.com on

Parallelization of a Dynamic Monte Carlo
Algorithm: A Partially Rejection-Free

Conservative Approach

G. Korniss,∗ M. A. Novotny,∗ and P. A. Rikvold∗,†
∗Supercomputer Computations Research Institute, Florida State University, Tallahassee, Florida 32306-4130;

and†Center for Materials Research and Technology and Department of Physics,
Florida State University, Tallahassee, Florida 32306-4350

E-mail: korniss@scri.fsu.edu, novotny@scri.fsu.edu, and rikvold@scri.fsu.edu

Received December 28, 1998; revised April 28, 1999

We experiment with a massively parallel implementation of an algorithm for simu-
lating the dynamics of metastable decay in kinetic Ising models. The parallel scheme
is directly applicable to a wide range of stochastic cellular automata where the discrete
events (updates) are Poisson arrivals. For high performance, we utilize a continuous-
time, asynchronous parallel version of then-fold way rejection-free algorithm. Each
processing element carries anl × l block of spins, and we employ fast one-sided
communication routines on a distributed-memory parallel architecture. Different
processing elements have differentlocal simulated times. To ensure causality, the
algorithm handles the asynchrony in a conservative fashion. Despite relatively low
utilization and an intricate relationship between the average time increment and the
size of the spin blocks, we find that the algorithm is scalable and for sufficiently large
l it outperforms its corresponding parallel Metropolis (non-rejection-free) counter-
part. As a sample application, we present results for metastable decay in a model
ferromagnetic or ferroelectric film, observed with a probe of area smaller than the
total system. c© 1999 Academic Press

Key Words:Monte Carlo methods; parallel discrete-event simulations; rejection-
free algorithms; kinetic Ising model.

1. INTRODUCTION

Fast and efficient algorithms are invaluable ingredients for large-scale simulations in
physical sciences and engineering. The implementation of efficient, massively parallel al-
gorithms for Monte Carlo simulations is not only an interesting and challenging problem,
but also one of the most complex problems in parallel computing. It belongs to the class of
parallel discrete-event simulations (sometimes referred to as distributed simulations) which
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has numerous applications in engineering, computer science, and economics, as well as in
physics [1]. For example, in lattice Ising models the discrete events are spin updates, while
in queueing networks they are job arrivals. The dynamics of these systems, which obviously
contain a substantial amount of parallelism, were traditionally simulated on serial comput-
ers. Paradoxically, it is fairly difficult in practice to implement an efficient parallel algorithm
to simulate these dynamics, mainly due to the fact that the discrete events (updates) are not
synchronized by a global clock. Here we present and analyze the performance of a variation
[2] of then-fold way algorithm [3, 4] to simulate magnetization switching in a kinetic Ising
model on a distributed-memory parallel computer.

Metastability and hysteresis are widespread phenomena in nature. Ferromagnets are
common systems that exhibit these behaviors [5], but there are also numerous other examples
ranging from ferroelectrics [6] to electrochemical adsorbate layers [7] to liquid crystals [8].
An important potential technological application of nanoscale ferromagnetic particles and
ultrathin films is high-density magnetic recording media, and computational experiments
and modeling of these materials are integral parts of current research and engineering.

Simulating metastable decay often involves long characteristic time scales (the lifetime of
the metastable phase), and several sophisticated algorithms have been developed for serial
computers [3, 4, 9] to tackle this problem. Common testbeds for these algorithms are kinetic
Ising ferromagnets below their critical temperatureTc, which exhibit slow metastable decay
after reversal of the external magnetic field [10]. These models are appropriate for the study
of highly anisotropic single-domain nanoparticles and thin films [11].

There are powerful techniques, such as multi-spin coding [12] and cluster algorithms
[13, 14], to simulate theequilibrium properties of the Ising model, but these methods
completely change the original microscopicdynamics. Kinetic Ising models, either with
integer-time updates or with Glauber’s continuous-time interpretation [15], were believed
to be inherently serial; i.e., the corresponding algorithm could attempt to update only one
spin at a time. Providing a counterexample to that belief, Lubachevsky presented an efficient
conservative approach for parallel simulation of these systems [2]without changing the
dynamics of the underlying model. Applications of his scheme also include modeling of
wireless cellular communication networks [16] and ballistic particle deposition [17]. Also,
heproposeda way to incorporate then-fold way algorithm, possibly further contributing to
speedup. Here, we implement this algorithm on the isotropic, two-dimensional Ising model,
and we systematically compare its performance to the parallel Metropolis algorithm. To our
knowledge, this is the first actual implementation of the paralleln-fold way scheme. More
importantly, detailed comparison between the two parallel schemes (the paralleln-fold way
and the parallel Metropolis) has not been given before. As we show in this paper, there is
an interesting competition between their performances, and detailed analysis is essential to
decide which one to apply in different parameter regimes. We shall see that our algorithm
provides an efficient scalable way for simulatinglarge systems which would not fit the
memory of a single computer or for which the performance would be severely degraded
due to excessive (remote) memory usage.

This paper is organized as follows. In Section 2 we define the model and summarize
the standard Metropolis and rejection-free serial algorithms. In Section 3 we outline the
basic conservative approach for parallel discrete-event simulation, applied to Ising spins,
and describe the parallel Metropolis andn-fold way algorithms. In Section 4 we give some
details of the implementation and analyze its performance. In particular, we compare it
to that of the parallel Metropolis update scheme. In Section 5 we give some examples
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of ongoing and future applications to model magnetic and ferroelectric systems, and in
Section 6 we conclude with a brief summary.

2. THE MODEL

We simulate magnetization switching in the isotropic Ising model on anL × L square
lattice with periodic boundary conditions, which has the Hamiltonian

H = −J
∑
〈i j 〉

si sj − H
L2∑

i=1

si . (1)

Here J> 0 is the ferromagnetic nearest-neighbor spin-spin interaction,H is the external
field, and the sum

∑
〈i j 〉 runs over all nearest-neighbor bonds. To study metastable decay,

all spins are initialized in the+1 state, and we apply a negative magnetic field (i.e., a
sudden field reversal) at constantT < Tc. HereTc is the critical temperature of the zero-
field Ising model, below which the system spontaneously orders. ForT < Tc the decay of the
metastable phase proceeds through nucleation and growth of one or more compact droplets
of the stable phase. For fixedT andH there exists a system size, approximately the typical
droplet separationRo(T, |H |), such that forL > Ro, many droplets form and contribute
to the decay of the metastable phase. This is called the multidroplet regime [10]. For the
simulations presented in this paper the parameters are chosen such that the system is in this
regime. In particular,Ro≈ 275 atT = 0.6Tc and|H |/J= 0.2222, andRo≈ 12 atT = 0.8Tc

and|H |/J= 0.4127 are the largest and smallest values ofRo for the temperatures and fields
used in the following sections.

2.1. The Serial Metropolis Algorithm

In the standard serial Monte Carlo (MC) algorithm [15], where time is a discrete variable
taking on integer values, we choose the single-spin-flip Metropolis rates, according to
which at every MC step (MCS) a spin is picked randomly on the lattice and flipped with
the probability

p = min{1, exp(−1H/kT)}, (2)

where1H is the energy change which would result from the flip.
It is important to note that in this standard algorithm, the choice of fixed integer time

increments (i.e.,1t ≡ 1 MCS between two successive spin-flip trials) is a convenience
rather than a necessity: the underlyingdynamicsof the real physical system corresponds to
a continuous time evolution, in which spin-flip attempts are Poisson arrivals. Thus, the time
increment between two successive events is an exponentially distributed random variable.
To exactly mimic the Poisson arrivals one should generate random time increments by

1t = −ln(r ) (3)

in units of MCS, wherer is uniformly distributed in(0, 1). Clearly, this is computationally
more expensive than the simple integer–time update and usually yields identical results
when averaged over many independent runs. This extra cost, however, can pay off when
mapping the system onto a parallel computer, as we shall see in Sections 3 and 4.
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An important quantity of interest is the average lifetime〈τ 〉 of the system, which is the
time needed to exit the metastable phase. A possible way to estimate this quantity is to keep
track of the time series of the magnetization

m= 1

L2

L2∑
i=1

si , (4)

which approximately equals−1 in the equilibrium phase. An average of its first-passage
time to zero (i.e.,m(t = τ)= 0) over many independent escapes from the metastable state
will then yield 〈τ 〉.

The weakness of the standard Metropolis algorithm (with both integer and continuous
time) is the low acceptance rate of spin-flip trials at low temperature and low field, which
is a result of the small flipping probabilityp in Eq. (2). For example, atT = 0.7Tc and
|H |/J= 0.2857 the fraction of successful spin-flip attempts is only about 5%. One may
overcome this “waste of trials” by using a rejection-free update scheme as summarized in
the following subsection.

2.2. The Serial n-Fold Way Algorithm

In then-fold way update scheme [3], a spin flip is always performed, and the simulated
time is incremented appropriately. To implement the scheme, one must introduce the notion
of spin classes which carry the state of the spin itself and its neighbors. In the above model
there are 10 such classes, characterized by the number of spins in classi , ni , and the
flipping probability, pi , which is the same for all spins in a class. Since the classes are
disjoint,

∑10
i=1 ni = L2. When an update is performed a class is first chosen according to the

relative weights{ni pi }10
i=1; then one of the spins in the class is picked with equal probability,

1/ni . Once the information on the classes has been updated, in particular theni ’s, the time
of the next update is determined. As in the standard (non-rejection-free) update scheme,
then-fold way algorithm can be performed in either integer or continuous time [4]. In both
cases the time increment is arandomvariable. For the integer–time case, it is a geometrically
distributed random number,

1t = INT

[
ln(r )

ln(1− 0)
]
+ 1, (5)

while for continuous time it is exponentially distributed,

1t = − ln(r )

0
. (6)

Here,

0 =
∑10

i=1 ni pi

L2
(7)

is the inverse of the average time needed to exit the configuration specified by{ni }, and
r is a uniformly distributed random number on(0, 1) [3, 4]. For both cases,1t is given
in units of MCS. At low temperatures thepi ’s of the dominant classes (those with high
populations) can be very small, resulting in large typical time increments. For example, at
T = 0.7Tc and|H |/J= 0.2857 the mean time increment is approximately 20 MCS. This is
how the algorithm “bypasses” a large number of unsuccessful flip attempts and can increase
the efficiency by several orders of magnitude [4].
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Finally, it is important to note that the standard Metropolis and then-fold way algo-
rithms yield identical physical results. They are simply two different implementations for
simulating the same dynamics.

3. PARALLELIZATION

3.1. The Parallel Metropolis Algorithm

First, we review the conservative scheme for parallelization of the standard Metropolis
algorithm [2]. An obvious way to parallelize the serial Metropolis algorithm is to spatially
decompose theL × L lattice intol × l blocks. When it is mapped onto a parallel computer,
each processing element (PE) carries anl × l block of spins. The number of PEs,NPE,
and the block size,l , are simply related throughNPE= (L/ l )2 (Fig. 1). Here we outline
the algorithmic steps for the continuous-time case. Each PE carries its ownlocal time t .
Initially a spin configuration, corresponding tot = 0, is chosen, and the time of the first
update is determined byt =−ln(r ), independently on each PE. In our case, the initial con-
figuration issi =+1 for all spins. For clarity, our time unit will be one MCS per PE (MCSP),
during which each PE attempts to update one spin on average. Each PE is responsible for
updating theN= l 2 spins that it carries by iterating the following steps:

Step 1. Select a spin from the block with equal probabilities.

Step 2. (a) If the chosen spin is in the kernel of the block, go to Step 3.
(b) If the chosen spin is on the boundary of the block,wait until the local simulated

time t of this update becomes less than or equal to the same quantity for the corresponding

FIG. 1. Schematic diagram of the spatial decomposition of the system and its mapping onto a parallel machine.
HereL = 12 andl = 4. Each of theNPE= (L/ l )2= 9 processing elements (PEs) carriesl 2= 16 spins, confined by
solid lines. The spins on the boundary are separated from those in the kernel by dashed lines.
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neighboring PE(s) (for our model on a square lattice, 2 PEs for corner spins, one PE
otherwise), then proceed to Step 3.

Step 3. Update the state of the spin using the same probabilities as those in the standard
serial algorithm [Eq. (2)].

Step 4. Determine the time of the next update by using thelocal time increment
1t =−ln(r ), wherer is a uniformly distributed random number on (0, 1).

With reliable random number generators (an independent one on each PE), and use of
a continuous probability density (exponential) for the time increments, the probability of
equal-time nearest-neighbor updates is of measure zero. Thus, noglobal barrier synchro-
nization is necessary among the PEs to preserve the uniqueness of the simulated trajectory,
provided the same set of random seeds is used initially. The algorithm is obviously free
from deadlock, since in the worst-case scenario the PE with the minimum local time is
able to make progress. It is clear from the aboveasynchronousalgorithm that at any given
(wall clock) moment, different PEs have different local simulated times. The “wait until”
directive in Step 2., however, ensures that the information passed between neighboring PEs
does not violate causality. This can be seen from the following example. Suppose that PE4
is currently updating spinsi , which is on the boundary of its block (Fig. 1). This update is
possible if the local update time on PE4,t4, is not larger than that on PE5,t5. The update is
also necessarily correct sincesk is guaranteed to be in the same state that it was in att4. This
is so because updates for PE5 are forbidden by the “wait until” directive oncet5 becomes
larger thant4.

The above asynchronous algorithm is suitable for a continuous-time update scheme, but
it can cause inconsistency when integer time is used. Then, explicit barrier synchronization
should be incorporated (synchronous algorithm) to treat equal-time spin-flip trials of nearest-
neighbor spins without ambiguity, and to ensure the reproducibility of a simulated path,
provided the same set of random seeds is used. However, these (independent) nearest-
neighbor, equal-time events violate detailed balance [with respect to the Hamiltonian (1)],
and are unprecedented in the corresponding serial algorithm. Thus, we conclude that to be
faithful to the original kinetic Ising model, one must employ thecontinuous-timeupdate
scheme. Other, more general cellular automata may tolerate nearest-neighbor, equal-time
updates, since in such cases the microscopic update rates are not necessarily related to
ana priori known equilibrium probability distribution, and the corresponding equal-time
events may very well represent the real physical behavior. Also note that frequent barrier
synchronization can be very “expensive” on a distributed-memory architecture, such as the
T3E, where each PE executes the code completely independently of all other PEs. This
is especially true for Monte Carlo algorithms, in which the core of the update routine is
extremely simple and the time a PE spends at a barrier waiting for the others can easily
exceed the time it is active.

3.2. The “Shielded” Parallel n-Fold Way Algorithm

A natural idea for parallelizing then-fold way algorithm is to employ the same spatial
decomposition as that for the parallel Metropolis algorithm, and to apply the serial rejection-
free update scheme directly on each block. However, one cannot simply run a copy of the
serialn-fold way algorithm on each PE: due to the nearest-neighbor interaction, the local
time increments and the class populations depend not only on the spin values in the block
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carried by that PE, but also on the states of the spins located on the adjacent boundaries of
the neighboring PEs. By updating a spin on the boundary of a block, the updating PE could
corrupt the simulated history of a neighboring block, if the local time of the latter is already
ahead of that of the former. Thus, the neighboring PE would need to perform a rollback
procedure to recover from the simulation of a series of “false” events. It is easy to see that
this rollback might generate a cascade of rollbacks in other PEs, making the implementation
rather difficult. Moreover, it is unclear how frequently such rollbacks would occur, and how
far they would go back in time and propagate through space.

Lubachevsky proposed a way to avoid rollbacks by modifying the original algorithm [2].
In each block, an additional class which contains the spins on the boundary is defined. The
weight of this class is the number of boundary spins,Nb= 4(l − 1), which does not change
during the simulation. The originaln-fold way tabulation of spin classes is only used in the
kernel of the block. Hence,Nb+

∑10
i=1 ni = N, where

∑10
i=1 ni = Nk is the number of spins

in the kernel, andN= l 2 is the total number of spins in a block. Note that the population
of the classes,{Nb, {ni }10

i=1}, is maintained separately for each block by the corresponding
PE. Once the initial configuration is set and the corresponding local time of first update is
determined, the asynchronous algorithm (with continuous time) consists of the following
iterated steps performed by each PE:

Step 1. Select a class according to the relative weights{Nb, {ni pi }10
i=1}, and select a spin

from the chosen class with equal probabilities.

Step 2. (a) If the chosen spin is in the kernel, flip it with probability one and go to Step 3.
(b) If the chosen spin belongs to the boundary class,wait until the local simulated

time of this update becomes less than or equal to the same quantity for the corresponding
neighboring PE(s). Then the state of this spinmayor may notchange: flip it with the usual
Metropolis probability [Eq. (2)] and proceed to Step 3.

Step 3. Update the tabulation of the spin classes{ni }10
i=1 in the kernel.

Step 4. Determine the time of the next update (in units of MCSP) by using thelocal
time increment,1t =−ln(r )/0s, where

0s = Nb+
∑10

i=1 ni pi

N
, (8)

andr is a uniformly distributed random number on(0, 1).

Thanks to the introduction of the class of boundary spins (which hasfixed weight),
the neighboring PEs are shielded from each other, since a spin flip on the boundary of a
block does not affect the tabulation of spin classes in an adjacent block. Hence, just as in
the standard parallel scheme, the same conservative approach (the “wait until” directive
in Step 2) ensures that the information passed between PEs is valid and the updates are
correct.

Again (employing proper synchronization), one can experiment with integer–time up-
dates. Although in this case time increments are random integers and the probability of
picking two nearest-neighbor spins residing on two adjacent PEs with equal update times
is small, it is nevertheless nonzero. We have already argued that these (perhaps rare) events
have no corresponding analogues in the serial algorithm. Furthermore, the use of barrier
synchronization severely degrades performance. Although, for “experimentation” purposes
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on the architecture we implemented the integer–time, synchronous algorithm as well [18],
we will not discuss its performance in detail here.

4. PERFORMANCE

We implemented both the parallel Metropolis and the paralleln-fold way algorithms (as
described in the previous section) on the Cray T3E parallel architecture at the National
Energy Research Scientific Computing Center (NERSC). For message passing, we employ
the Cray-specific, logically shared, distributed memory access (SHMEM) routines. The fast
SHMEM library supports communication initiated byonePE, together with remote atomic
memory operations. Without these features, it would be extremely inconvenient to code an
algorithm for stochastic simulation on a distributed memory machine, where the pattern
of communication is completely unpredictable. These characteristics clearly outweigh the
loss of portability of our code.

One-sided communications, which are the essential ingredient for efficient coding of the
stochastic, massively parallel algorithm, have also been implemented in the MPI-2 library.
This library is widely available and supported on various platforms, providing a high degree
of portability. The reason for our choice of the proprietary SHMEM library is simply (and
paradoxically) that MPI-2 was not yet implemented on the T3E at the time of our code
development.

To better understand the performance of our implementation we monitored the following
quantities:

Utilization. This is defined as the fraction of “non-idling” PEs, i.e., the PEs which
either pick a spin in the kernel or successfully pass the “wait until” directive in Step 2 of the
algorithms. Since the routines are asynchronous (the main simulation cycles on each PE are
not executed in lock-step) it is fairly difficult to measure this ratio. To obtain an estimate,
we placed explicit barrier synchronization in our code and performedseparateruns. The
performance was irrelevant for these runs; the only information that we aimed for was the
fraction of non-idling PEs in each (now artificially lock-step) main simulation cycle. We
emphasize that the utilization only measures the fraction of PEs that are not idle. It does
not say anything about whether the active PEs are doing anything “useful” in the sense of
performing successful updates.

The mean local time increment,1t . Although1t in the n-fold way algorithm is not
stationary over the course of the metastable decay, its mean carries important information
about the degree of success by which the algorithm “bypasses” those spin-flip attempts
which would be rejected if the Metropolis algorithm were used. For the parallel Metropolis
algorithm1t = 1 trivially (ln(r )= 1).

PE update rate. This quantity is literally the simulation speed of a PE in units of standard
MCS per PE per second, i.e., MCSP/s. This is an “absolute” measure and in fact determines
which parallel algorithm should be used for optimal simulation speed. The full update rate
of the parallel algorithm is simply (PE update rate)× NPE. In order to compare directly the
performances of the parallel algorithms to those of their serial counterparts, when the full
lattice size was small enough to fit on one PE, we also ran the corresponding serial routines
on one node of the T3E and determined the following measures:

Efficiency. This is the ratio of the PE update rate of the parallel algorithm to the update
rate of the corresponding serial algorithm using the same full system sizeL. For both parallel



496 KORNISS, NOVOTNY, AND RIKVOLD

algorithms it is proportional to the utilization, and it is related to the communication speed
of the architecture through the fraction of spin-flip attempts in which message passing is
needed. For our algorithms, due to the fast communication hardware of the architecture,
the communication overhead is a small effect compared to the inherent low utilization,
which is a common drawback of conservative parallel methods. For the paralleln-fold way
algorithm the efficiency is also proportional to the ratio of the typical time increments of
the parallel and the corresponding serial routine,1tpar/1tser.

Speedup. This is the ratio of the (full) update rate of the parallel algorithm to the update
rate of its corresponding serial counterpart, i.e., efficiency× NPE.

Both efficiency and speedup arerelativemeasures, and they merely indicate how success-
fully the parallelization of thecorrespondingserial algorithm is accomplished. As we shall
see, a parallel code with lower efficiency can outperform one with higher efficiency, due
to the faster “serial” core of the former. For very large systems, direct simulation using the
serial algorithms is not possible, due to memory limits. The largest system sizes we could
allocate wereL = 2048 for the serial Metropolis andL = 1280 for the serialn-fold way
algorithm. To obtain speedup and efficiency estimates for larger systems we extrapolated
the smaller-system update rates of the serial routines.

Before discussing the performance of the “shielded”n-fold way algorithm, we note
two inherently weak features, which are not related to the otherwise fast communication
hardware of the T3E parallel architecture.

First, as a general guideline, the fewer communications one must execute, the better
the performance of the parallel code. In our case, the probability of picking a spin on the
boundary, which will be followed by some kind of communication between neighboring
PEs, is greater than the surface-to-volume ratio,Nb/N= 4(l −1)/ l 2≈ 4/ l . In particular, it
is determined by the relative weights in the modifiedn-fold way algorithm, which are given
by Nb/(Nb+

∑10
i=1 ni pi ). With very smallpi ’s this ratio can take unfavorably large values,

close to unity, leading to more frequent message passing and, more importantly, idling if
required by the “wait until” directive.

Second, the typical time increment of the parallel algorithm is smaller than that for
the serial algorithm. As mentioned in Section 2, the advantage of the serialn-fold way
routine lies in the large typical time increments that correspond to the very small flipping
probabilities at low temperatures. However, for the same sets of class-specific flipping
probabilitiespi , the mean time increments of the “shielded” parallel and serialn-fold way
routines are related as

1

1tpar
≈ Nb

N
+
∑10

i=1 ni pi

Nk

Nk

N
≈ Nb

N
+ 1

1tser

Nk

N
= 1

1tser
+ Nb

N

(
1− 1

1tser

)
. (9)

This follows from Eq. (8) and implies that1tpar< 1tser always. Thus at very low temper-
atures, where1tserÀ l/4,1tpar is determined almost completely by the block size, rather
than by thepi ’s and the populations of the corresponding classes:

1tpar <∼ l/4. (10)

We test the scaling of the parallel algorithms with up to 400 PEs. First, the system size is
kept constant, and we divide it into smaller and smaller blocks (Fig. 2). Then, alternatively,
we keep the block size fixed and study the scaling for larger and larger systems by increasing
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FIG. 2. Scaling and performance analysis for fixed system size,L = 512, atT = 0.7Tc and|H |/J= 0.2857,
comparing the paralleln-fold way algorithm (open squares) and the parallel Metropolis algorithm (filled squares).
The lines connecting the data points are merely guides to the eye except in (b), where they represent the theo-
retical prediction of Eq. (9). (a) Utilization. (b) Mean time increment,1t , for the paralleln-fold way algorithm.
(c) Update rate (inset: PE update rate in units of 106 MCSP/s). (d) Speedup (inset: efficiency).

the number of blocks (Fig. 3). We also carry out experiments with fixed number of PEs and
varying block size (Fig. 4) to study in detail the effect of increasing the surface-to-volume
ratio of the blocks. Each of these studies was performed atT = 0.7Tc and|H |/J= 0.2857,
where the typical droplet separation,Ro, is approximately 32 lattice constants. Finally, with
fixed number of PEs and fixed block size we study the effect of the temperature and magnetic
field on the performance (Fig. 5), to determine the regime of efficient applications to our
particular model system. The results reflect the features discussed in the previous paragraph.

4.1. Scaling with NPE for Fixed System Size

For this series of runs we chooseL = 512 for the total system size and we employ
NPE= 4, 16, 64, and 256 (corresponding tol = 256, 128, 64, and 32, respectively). For
both the paralleln-fold way and the parallel Metropolis algorithm the utilization drops with
decreasing block size (Fig. 2a). The utilization for then-fold way routine is significantly
lower than that for Metropolis: the probability of choosing a spin on the boundary is greater
than the surface-to-volume ratio and then it is ultimately followed by an inquiry of the
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FIG. 3. Scaling and performance analysis for three different block sizes,l = 64, 128, and 256 for the parallel
n-fold way algorithm (open circles, squares, and triangles, respectively), andl = 128 for the parallel Metropolis
algorithm (filled squares) atT = 0.7Tc and |H |/J= 0.2857. The linear system size isL = l

√
NPE. The lines

connecting the data points are merely guides to the eye except in (b), where they represent the theoretical prediction
of Eq. (9). (a) Utilization. (b) Mean time increment,1t , for the paralleln-fold way algorithm. (c) Update rate
(inset: PE update rate in units of 106 MCSP/s). (d) Speedup (inset: efficiency).

local time of the neighbor(s) and possible idling. Further, the typical time increments are
decreasing as well (Fig. 2b). Note that for theserial n-fold way routine the mean time
increment is1tser= 19.9 (Table I). This is the only parameter in Eq. (9) which gives
complete agreement with the measured values of1tpar, as shown by the solid curve in

TABLE I

Mean Time Increments (in MCSP) for the Serial and the Paralleln-Fold Way Algorithms

with Different Block Sizes l at T = 0.7Tc, |H|/J = 0.2857a

Paralleln-fold way with block sizel Serial

l 16 32 64 128 256 512 1024 b

1t 3.7 6.1 9.2 12.6 15.4 17.4 18.5 19.9

a They are approximately independent of the full system sizeL andNPE.
b The mean time increment for the serial algorithm is approximately independent ofL.
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FIG. 4. Performance analysis for fixed number of PEs,NPE= 64, as a function of the block size,l , for the
paralleln-fold way algorithm (open squares), and for the parallel Metropolis algorithm (filled squares) atT = 0.7Tc

and|H |/J= 0.2857. The lines connecting the data points are merely guides to the eye except in (b), where they
represent the theoretical prediction of Eq. (9) (a) Utilization. (b) Mean time increment,1t , for the paralleln-fold
way algorithm. (c) Update rate (right scale) and PE update rate (left scale). (d) Speedup (right scale) and efficiency
(left scale).

Fig. 2b. As a result of these factors, the PE update rate of the paralleln-fold algorithm
drops faster than that of the parallel Metropolis algorithm (Fig. 2c inset). For sufficiently
small blocks, the performance of then-fold routine actually becomes poorer than that for
the Metropolis routine, as we shall see in the experiments with fixed number of PEs and
varying block size. For both algorithms the scaling is systematicallyworse than linear,
for the reasons explained above (Fig. 2c). In particular, the paralleln-fold way for large
number of PEs (small block sizel ) cannot scale better than

√
NPE, since for fixedL the

typical time increment scales as1tpar<∼ l/4∼ 1/
√

NPE. Although employing manysmall
blocks does result in speedup, the efficiency clearly becomes poorer at the same time
(Fig. 2d).

For completeness, we mention that the performance of the integer–time, synchronous
n-fold way routine becomes progressively weaker than that of the asynchronous version
with continuous time for an increasing number of PEs. For example, with 256 PEs it runs
2.3 times slower than the continuous-time routine, due to the necessity of explicit barrier
synchronizations. It is even slower than the asynchronous Metropolis routine by a factor
of 2.1.



500 KORNISS, NOVOTNY, AND RIKVOLD

FIG. 5. Performance analysis for three different temperatures,T = 0.8Tc, 0.7Tc, and 0.6Tc for the parallel
n-fold way algorithm (open circles, squares, and triangles, respectively), andT = 0.7Tc for the parallel Metropolis
algorithm (filled squares) as functions of the magnetic field. We employNPE= 64 andl = 128 (L = 1024). The
lines connecting the data points are merely guides to the eye. (a) Utilization. (b) Mean time increment,1t , for the
paralleln-fold way algorithm. Filled circles indicate the theoretical predictions of Eq. (9). (c) Update rate (right
scale) and PE update rate (left scale). (d) Speedup (right scale) and efficiency (left scale).

4.2. Scaling with NPE for Fixed Block Size

Here we keep the size of the blocks fixed (using three different values:l = 64, 128, 256),
while increasing the system size by using larger numbers of PEs (NPE= 4, 16, 64, 256,
and 400). Clearly, the larger the block size, the higher the utilization. Even with fixedl , the
utilization monotonically decreases with increasingNPE. However, it appears to approach
a nonzerovalue for large numbers of PEs (Fig. 3a). As was pointed out in Ref. [2], it is a
highly non-trivial mathematical problem to prove that the utilization tends to a nonzero value
as NPE→∞. For practical purposes, given our architecture with 512 nodes this question
might seem academic, but it truly lies at the heart of this conservative approach to discrete-
event simulation. Again, the utilization for the parallel Metropolis algorithm significantly
exceeds that for then-fold way: for the Metropolis routine withl = 128 it is 82% with 400
PEs, while for then-fold way it is only 56%, even forl = 256. With fixedl , the mean time
increments are independent ofNPE in the paralleln-fold way routine (Fig. 3b). However,
increasingl systematically improves1t and thus the performance. We find almostlinear
scaling of the update rate withNPE for both parallel algorithms (Figs. 3c, d). Despite its
relatively low utilization, then-fold way routine clearly outperforms the Metropolis routine,
due to its large time increments (partly rejection-free nature).
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Again we note that our implementation of the integer–time synchronousn-fold way
algorithm performs rather poorly compared to its asynchronous counterpart: it runs 2.3
times slower than the asynchronousn-fold way and 1.3 times slower than the asynchronous
Metropolis routine withl = 128 and 256 PEs.

4.3. Simulation with Fixed Number of PEs and Varying Block Size

HereNPE= 64, which can be regarded as a reasonable number for production runs. We
increase the block size (l = 16, 32, 64, 128, 256, 512, and 1024) and “stretch” the routine
close to its memory limits. For both algorithms the utilization increases with increasing block
size. This happens faster for the parallel Metropolis routine, for which the utilization is more
directly related to the surface-to-volume ratio of the blocks (Fig. 4a): forl = 1024 it is 93%
while it is 74% for then-fold way routine. Further, the mean time increment for the parallel
n-fold way algorithm systematically approaches that of its serial counterpart,1tser= 19.9
(Fig. 4b and Table I). For largel such thatl/4 À 1tser, 1tpar<∼1tser, as expected from
Eq. (9). The data are in complete agreement with our theoretical result, given by the solid
curve. Here the temperature and field are moderate, so that the increasing block sizel
allows1tpar to “catch up” with1tser. The drawback is that employing large blocks can lead
to excessive memory usage. The PE update rate of then-fold way routine withl = 1024
slightly decreases compared tol = 512 (Fig. 4c), even though the utilization and the mean
time increment slightly increase. In fact,l = 1024 is fairly close to the largest block size we
could allocate in the memory of one node. For very smalll (l≤16), the utilization and1t
of then-fold way routine are so low that the routine is actually outperformed by the parallel
Metropolis routine (Fig. 4c).

4.4. Simulation with Fixed Number of PEs and Varying Physical Control Parameters

HereNPE= 64 andl = 128 are kept constant while we vary the magnetic field for three
different temperatures to study the effects of changing the characteristic length and time
scales of the simulated system. As expected, the utilization for the Metropolis algorithm
is unaffected(Fig. 5a); the slight increase in the PE update rate at lower fields (Fig. 5c)
or temperatures is due to the fact that for higher rejection rates fewer variables need to be
updated. The paralleln-fold way routine suffers from low utilization at low temperatures
and fields: in a high percentage of the execution time of the main simulation cycle, a
spin on the boundary is picked. This not only implies necessary communications with
its neighboring PE(s), but possible idling if the local times of the neighboring blocks are
behind. Although the time increments increase with decreasing temperature and field, they
cannot exceedl/4, as shown in Eq. (10) (Fig. 5b). Nevertheless, even with the bounded
time increments, the paralleln-fold way routine outperforms the parallel Metropolis routine
(Fig. 5c). The drawback of the parallel (partially rejection-free)n-fold way scheme is the
low efficiency with respect to itsserialcounterpart (Fig. 5d); for example, atT = 0.6Tc and
|H |/J= 0.2222 it is only 13.2%, corresponding to a speedup of only 8.4. For comparison,
the mean time increments of the serialn-fold way routine are also given in Table II.

5. APPLICATIONS

As discussed in Section 2, below the equilibrium critical temperature the kinetic Ising
system exhibits metastable decay after an instantaneous magnetic field reversal from
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TABLE II

Mean Time Increments (in MCSP) for the Serial and the Paralleln-Fold Way Algorithms

for Different Temperatures and Magnetic Fields (NPE = 64, l = 128)

|H |/J

0.1587 0.2222 0.2857 0.3492 0.4127

T/Tc 0.6 Serial — 81.5 61.4 46.4 36.3
Parallel — 23.4 21.4 19.3 17.4

0.7 Serial 33.8 25.4 19.9 16.5 14.3
Parallel 16.8 14.5 12.6 11.1 10.1

0.8 Serial 12.5 10.4 9.2 8.5 7.9
Parallel 9.2 8.0 7.4 6.9 6.5

|H | to −|H |. Using standard droplet theory [10], one can show that a thermally nucleated
domain of the stable phase must reach a critical droplet size, corresponding to a (temperature
and field dependent) critical radiusRc, before its growth becomes energetically favorable.
For systems significantly larger than the typical droplet separationRo (which decreases in
a nonlinear fashion with increasing|H | andT), many droplets of the stable phase form
and grow until they coalesce and occupy the whole system (multi-droplet (MD) regime)
[10, 19]. The parameters we choose correspond to this decay mode. Note thatRc¿ Ro,
in particular,Rc/Ro→ 0 in the|H |→0 limit. A quantity of interest is the lifetime of the
metastable phase,〈τ 〉, which is defined as the average first-passage time to zero magneti-
zation. Exploiting the fact that the system is self-averaging in this regime, one may employ
the classical Avrami law for homogeneous systems [20] in two dimensions to obtain an
analytical form for the time evolution of the system magnetization [10, 19],

m(t) ≈ (mms−ms)φms(t)+ms, (11)

where

φms(t) = e−(ln 2)(t/〈τ 〉)3 (12)

is the volume fraction of the metastable phase, andmms andms are the metastable and the
stable (equilibrium) magnetization, respectively.

For illustration we choose anL = 1024 system atT = 0.7Tc and |H |/J= 0.2857, and
we study metastable decay as observed through ab× b window. Employing different block
sizes,b, mimics the effect of choosing different finite (smaller than the system size) obser-
vation windows in a large system. This is clearly relevant to real experiments and obser-
vations, such as those using the magnetooptical Kerr effect [21]. We run our application
with NPE= 16, 64, and 256, directly corresponding to block sizesb= l = 256, 128, and
64, respectively. Since the maximum number of PEs available to us is 512, forb≤ 32 (for
the sameL = 1024 system) we employ 256 PEs withl = 64, and monitor observables for
a b× b block within the 64× 64 subsystem carried by each PE. Even our smallest block,
b= 8, is sufficiently large that subcritical fluctuations of sizeR< Rc≈ 2 are not recorded as
first-passage times to a block magnetization of zero. Together with the global magnetization,
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Eq. (4) we monitor the individual block magnetizations

mb = 1

b2

b2∑
i=1

si . (13)

Typical time series of these quantities are shown in Fig. 6, where time is measured in
units of MCS/spin (MCSS). Recording the first-passage times to zero for at least 100
escapes, we calculate the mean and the standard deviation of the lifetime (Fig. 7a) and
construct histograms forPb

not(t), the probability that the system or block magnetization has
not changed sign by timet (Fig. 7b).

Theaveragelifetime of a finite subsystem, as observed through a finite window,does not
differ significantly from the lifetime of the whole system (〈τ 〉=158.5 MCSS). However,
the statistical properties of the lifetime change not only quantitatively, but also qualitatively
with b. For b much larger than the typical droplet separation (Ro≈ 32 lattice constants at
this temperature and field), the time-dependent block magnetization itself is self-averaging,
the switching process is Gaussian, and consequentlyPb

not(t) is an error function [10]. While
the average lifetime within a block is unaffected, its standard deviation,σb, is proportional
to 1/b in two dimensions. Onceb becomes comparable to or smaller thanRo, the above
picture is no longer valid and a crossover to a qualitatively different behavior is observed.
For these smaller blocks, the switching within a block is not related to the growth of several
droplets nucleated within that block, but rather to a single droplet formed within the same
block, or to droplets formed elsewhere in the system which propagate across the observed
block. It is a challenging theoretical problem to describe the switching behavior analytically
in this crossover regime, and work is in progress to accomplish this task. In theb/Ro→ 0
limit the coarse-grained approximation (in which the size of the critical droplet is negligible)
yields Po

not(t)≈φms(t) [Eq. (12)], since the probability that the block magnetization has
not switched by timet then becomes equal to the volume fraction of the metastable phase.
The standard deviation in this limit can be obtained from the probability density of the
first-passage time,−d Po

not/dt, yielding σo≈ 0.1345〈τ 〉≈58.12 MCSS. Note, however,
that forb smaller than the diameter of the critical droplet (2Rc≈ 4 lattice constants for our
parameters) the above argument (which is based on the coarse-grained picture) is no longer
valid, since zero-crossings of the block magnetization are frequently induced by subcritical
fluctuations.

Another future application in the MD regime is to study the response to a periodic applied
magnetic field, which exhibits highly nontrivial hysteretic behavior [22]. If the half-period
of the applied field is less than the metastable lifetime〈τ 〉, the system almost always does
not switch, resulting in a nonzero period-averaged magnetization (“dynamically ordered
phase”). On the other hand, when the half-period exceeds〈τ 〉, the magnetization switches
in almost every half-period and the period-averaged magnetization is zero (“dynamically
disordered phase”). The transition between these two phases is sharp and singular: the sys-
tem exhibits adynamicphase transition, which fits into the general framework of critical
phenomena and continuous phase transitions [23]. Here there is clearly a need to study scal-
ing and universality by obtaining the corresponding critical exponents with high accuracy.
Also in this regime, our parallel algorithm appears to be very efficient for large systems. We
plan to implement it with a periodic square-wave shaped applied magnetic field and carry
out a large-scale finite-size scaling analysis of the dynamic phase transition.
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FIG. 6. Global and block magnetization time series for 10 different realizations atT = 0.7Tc and
|H |/J= 0.2857. (a) Forb= L = 1024 (global). The thick solid line, which is difficult to distinguish from the
simulation results, represents Avrami’s law [Eqs. (11) and (12)]. (b) Forb= 256. (c) Forb= 128. (d) Forb= 64.
(e) Forb= 32. (f) Forb= 16.
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FIG. 7. (a) Standard deviation of the first-passage time of the block magnetization to zero (open triangles)
as a function of the inverse block size, 1/b. The dashed line is merely a guide to the eye. The solid straight line
represents the theoretical dependence onb of the standard deviation for largeb. The dotted horizontal line is
the b/Ro→ 0 limit of the standard deviation (σo= 58.12 MCSS) within the coarse-grained approximation. (b)
The probability that the block magnetization, observed through ab× b window, has not changed sign by timet
after a sudden magnetic field reversal in a 1024× 1024 Ising system. The solid curves forb= 1024, 256, and 128
are scaled error functions, given by theory [10] for largeb. The dotted curve forb= 8 represents the theoretical
coarse-grainedb/Ro→ 0 limit, i.e., the metastable volume fraction,φms(t) [Eq. (12)], given by Avrami’s law. As
expected, it fits the data very well fort < 〈τ 〉, where droplet coalescence is unimportant.

6. CONCLUSION

We have studied the performance of the paralleln-fold way dynamic Monte Carlo al-
gorithm proposed by Lubachevsky [2], in which each PE carries anl × l block of random
variables. The algorithm was implemented for a two-dimensional kinetic Ising ferromagnet
undergoing metastable decay, but the parallel scheme is generically applicable to a wide
range of stochastic cellular automata where discrete events (updates) are Poisson arrivals.

One may clearly ask why not implement “trivial” or “embarrassing” parallelization where
one uses the serial algorithm and simply averages over independent parallel runs on various
processors at the end. This approach is obviously hard to beat in terms of programming effort
and utilization. However, fitting a very large system in the memory of a computerwithout
degrading the performance requires special hardware, e.g., extended cache or disks with fast
remote memory access. For example, for the serialn-fold way algorithm the largest system
we could allocate on one node of the T3E wasL = 1280, for which the performance (PE
update rate) was approximately 57% of that of theL = 64 case. Even forL = 512, in which
case the memory is far from being exhausted, the performance was already degraded to
65%, compared to that of theL = 64 case. Thus, massive stochastic parallelization provides
a fast alternative to special hardware for simulating very large systems.

To obtain reasonable performance on the T3E distributed-memory parallel architecture
and to be faithful to the original dynamics, one must utilize an asynchronous update scheme
with continuous time. Then the expensive global barrier synchronizations are avoided and
spin-flip attempts are modeled as independent Poisson arrivals. We analyzed the perfor-
mance of our implementation, which sensitively depends on the block size and the number
of PEs, as well as on the characteristic length and time scales of the simulated system.
We found that for large enough block size, the routine outperforms the standard parallel
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Metropolis algorithm. For moderately low temperatures it yields high speedups with re-
spect to the already fast serialn-fold way algorithm. For example, atT = 0.7Tc and
|H |/J= 0.2857, employingl = 256 we obtained a speedup of 260 with 400 PEs, and for
l = 1024 a speedup of 58 with 64 PEs. Often the system size (possibly large) is specified,
and for fixedL, although significantly worse than linear, the speedup is still a monotonically
increasing function of the number of PEs, up to the maximum 256 PEs that we studied.
At the same time, the efficiency is monotonically decreasing, which results in largertotal
CPU time usage to execute the same task with a larger number of PEs. If one has unlimited
resources (i.e., no allocation limits) this aspect is not relevant. For most, like us, who have
limited CPU resources on a certain parallel architecture, “optimization” between speedup
and efficiency can be important. Our implementation is obviously best suited to simulating
large systems.

On the other hand, for very low temperatures, the algorithm does not provide an efficient
way to simulate metastable decay. The reason for the relatively narrow regime of efficient
implementation lies in the introduction of a special class in then-fold way algorithm
which “shields” the blocks from each other, but significantly decreases the typical time
increments. The algorithm avoids rollbacks, but pays a large price: it loses the arbitrarily
large time increments that are the most important feature of the serialn-fold way algorithm,
at arbitrarily low temperature and field. To obtain reasonable efficiency compared to the
efficiency of the serialn-fold way algorithm, one needs to employ large blocks such that
l/4>∼1tser, and clearly it is impossible to keep up with very large serial time increments
by increasingl .

One way to preserve the advantage of the originaln-fold way algorithm in principle
would be to apply it directly on each block (optimistic approach). This would require a
complex protocol to correct erroneous computations. Such a rollback procedure would
ensure the correct time ordering of simulated events. This mechanism is not unknown in
distributed event simulation [24] and it certainly has some potential. The complexity of
such an implementation, however, might carry a tremendous overhead with respect to the
very simple and fast serial algorithm for the Ising model. Another possible way to improve
efficiency, while avoiding a general rollback procedure, is to consider relaxation [25] which
might use local speculative computations before scheduling an event [26].
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