Journal of Computational Physié§3,488-508 (1999)

®
Article ID jeph.1999.6291, available online at http://www.idealibrary.conl DE &l.

Parallelization of a Dynamic Monte Carlo
Algorithm: A Partially Rejection-Free
Conservative Approach

G. Korniss* M. A. Novotny,* and P. A. Rikvold"{

*Supercomputer Computations Research Institute, Florida State University, Tallahassee, Florida 32306-4:
and tCenter for Materials Research and Technology and Department of Physics,
Florida State University, Tallahassee, Florida 32306-4350
E-mail: korniss@scri.fsu.edu, novotny@scri.fsu.edu, and rikvold@scri.fsu.edu

Received December 28, 1998; revised April 28, 1999

We experiment with a massively parallel implementation of an algorithm for simu-
lating the dynamics of metastable decay in kinetic Ising models. The parallel scheme
is directly applicable to awide range of stochastic cellular automata where the discrete
events (updates) are Poisson arrivals. For high performance, we utilize a continuous-
time, asynchronous parallel version of tiiéold way rejection-free algorithm. Each
processing element carries s | block of spins, and we employ fast one-sided
communication routines on a distributed-memory parallel architecture. Different
processing elements have differéntal simulated times. To ensure causality, the
algorithm handles the asynchrony in a conservative fashion. Despite relatively low
utilization and an intricate relationship between the average time increment and the
size of the spin blocks, we find that the algorithm is scalable and for sufficiently large
| it outperforms its corresponding parallel Metropolis (non-rejection-free) counter-
part. As a sample application, we present results for metastable decay in a model
ferromagnetic or ferroelectric film, observed with a probe of area smaller than the
total system. (© 1999 Academic Press

Key Words:Monte Carlo methods; parallel discrete-event simulations; rejection-
free algorithms; kinetic Ising model.

1. INTRODUCTION

Fast and efficient algorithms are invaluable ingredients for large-scale simulation
physical sciences and engineering. The implementation of efficient, massively paralle
gorithms for Monte Carlo simulations is not only an interesting and challenging proble
but also one of the most complex problems in parallel computing. It belongs to the clas
parallel discrete-event simulations (sometimes referred to as distributed simulations) w
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has numerous applications in engineering, computer science, and economics, as wel
physics [1]. For example, in lattice Ising models the discrete events are spin updates, \
in queueing networks they are job arrivals. The dynamics of these systems, which obvic
contain a substantial amount of parallelism, were traditionally simulated on serial com
ers. Paradoxically, itis fairly difficult in practice to implement an efficient parallel algorith
to simulate these dynamics, mainly due to the fact that the discrete events (updates) a
synchronized by a global clock. Here we present and analyze the performance of a vari
[2] of the n-fold way algorithm [3, 4] to simulate magnetization switching in a kinetic Isin
model on a distributed-memory parallel computer.

Metastability and hysteresis are widespread phenomena in nature. Ferromagne
common systems that exhibitthese behaviors [5], but there are also numerous other exa
ranging from ferroelectrics [6] to electrochemical adsorbate layers [7] to liquid crystals |
An important potential technological application of nanoscale ferromagnetic particles
ultrathin films is high-density magnetic recording media, and computational experime
and modeling of these materials are integral parts of current research and engineerin

Simulating metastable decay often involves long characteristic time scales (the lifetin
the metastable phase), and several sophisticated algorithms have been developed fo
computers [3, 4, 9] to tackle this problem. Common testbeds for these algorithms are kil
Ising ferromagnets below their critical temperat@igewhich exhibit slow metastable decay
after reversal of the external magnetic field [10]. These models are appropriate for the <
of highly anisotropic single-domain nanoparticles and thin films [11].

There are powerful techniques, such as multi-spin coding [12] and cluster algoritl
[13, 14], to simulate the=quilibrium properties of the Ising model, but these methoc
completely change the original microscopignamics Kinetic Ising models, either with
integer-time updates or with Glauber’s continuous-time interpretation [15], were belie
to be inherently serial; i.e., the corresponding algorithm could attempt to update only
spin atatime. Providing a counterexample to that belief, Lubachevsky presented an effi
conservative approach for parallel simulation of these systemwifiput changing the
dynamics of the underlying model. Applications of his scheme also include modelinc
wireless cellular communication networks [16] and ballistic particle deposition [17]. Al
heproposeda way to incorporate the-fold way algorithm, possibly further contributing to
speedup. Here, we implement this algorithm on the isotropic, two-dimensional Ising ma
and we systematically compare its performance to the parallel Metropolis algorithm. To
knowledge, this is the first actual implementation of the paraHfgld way scheme. More
importantly, detailed comparison between the two parallel schemes (the paufallévay
and the parallel Metropolis) has not been given before. As we show in this paper, the
an interesting competition between their performances, and detailed analysis is essen
decide which one to apply in different parameter regimes. We shall see that our algor
provides an efficient scalable way for simulatilagge systems which would not fit the
memory of a single computer or for which the performance would be severely degrs
due to excessive (remote) memory usage.

This paper is organized as follows. In Section 2 we define the model and summz
the standard Metropolis and rejection-free serial algorithms. In Section 3 we outline
basic conservative approach for parallel discrete-event simulation, applied to Ising s|
and describe the parallel Metropolis amdiold way algorithms. In Section 4 we give some
details of the implementation and analyze its performance. In particular, we compa
to that of the parallel Metropolis update scheme. In Section 5 we give some exam
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of ongoing and future applications to model magnetic and ferroelectric systems, an
Section 6 we conclude with a brief summary.

2. THE MODEL

We simulate magnetization switching in the isotropic Ising model oh anL square
lattice with periodic boundary conditions, which has the Hamiltonian

L2
H=-J ssj—HZs. (2)
(i) i=1
Here J > 0 is the ferromagnetic nearest-neighbor spin-spin interachibis the external
field, and the sunz(m runs over all nearest-neighbor bonds. To study metastable dec
all spins are initialized in the-1 state, and we apply a negative magnetic field (i.e.,
sudden field reversal) at constaht< T.. Here T, is the critical temperature of the zero-
field Ising model, below which the system spontaneously orders. kot the decay of the
metastable phase proceeds through nucleation and growth of one or more compact dr
of the stable phase. For fix@dandH there exists a system size, approximately the typic
droplet separatioiR,(T, |H|), such that forL > R,, many droplets form and contribute
to the decay of the metastable phase. This is called the multidroplet regime [10]. For
simulations presented in this paper the parameters are chosen such that the system is
regime. In particularx, ~ 275 atT =0.6T. and|H|/J =0.2222, andR, ~ 12 atT =0.8T,
and|H|/J =0.4127 are the largest and smallest valueBgfor the temperatures and fields
used in the following sections.

2.1. The Serial Metropolis Algorithm

In the standard serial Monte Carlo (MC) algorithm [15], where time is a discrete varia
taking on integer values, we choose the single-spin-flip Metropolis rates, accordin
which at every MC step (MCS) a spin is picked randomly on the lattice and flipped w
the probability

p = min{1, exp(—AH/KT)}, 2)

whereAH is the energy change which would result from the flip.

It is important to note that in this standard algorithm, the choice of fixed integer til
increments (i.e.At=1 MCS between two successive spin-flip trials) is a convenien
rather than a necessity: the underlythmamicf the real physical system corresponds
a continuous time evolution, in which spin-flip attempts are Poisson arrivals. Thus, the t
increment between two successive events is an exponentially distributed random vari
To exactly mimic the Poisson arrivals one should generate random time increments b

At = —In(r) 3

in units of MCS, where is uniformly distributed in(0, 1). Clearly, this is computationally
more expensive than the simple integer—time update and usually yields identical re
when averaged over many independent runs. This extra cost, however, can pay off \
mapping the system onto a parallel computer, as we shall see in Sections 3 and 4.
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An important quantity of interest is the average lifetiaé of the system, which is the
time needed to exit the metastable phase. A possible way to estimate this quantity is to
track of the time series of the magnetization

1 &
mzpzs:, @)
i=1

which approximately equals 1 in the equilibrium phase. An average of its first-passac
time to zero (i.e.m(t = t) = 0) over many independent escapes from the metastable s
will then yield (z).

The weakness of the standard Metropolis algorithm (with both integer and continu
time) is the low acceptance rate of spin-flip trials at low temperature and low field, wh
is a result of the small flipping probabilitp in Eq. (2). For example, af =0.7T; and
[H|/J =0.2857 the fraction of successful spin-flip attempts is only about 5%. One
overcome this “waste of trials” by using a rejection-free update scheme as summariz
the following subsection.

2.2. The Serial n-Fold Way Algorithm

In then-fold way update scheme [3], a spin flip is always performed, and the simula
time is incremented appropriately. To implement the scheme, one must introduce the n
of spin classes which carry the state of the spin itself and its neighbors. In the above nr
there are 10 such classes, characterized by the number of spins in,agsand the
flipping probability, p;, which is the same for all spins in a class. Since the classes
disjoint,zilg1 ni = L2. When an update is performed a class is first chosen according to
relative weightgn; pi }12;; then one of the spins in the class is picked with equal probabili
1/n;. Once the information on the classes has been updated, in particuhgistitee time
of the next update is determined. As in the standard (non-rejection-free) update sch
then-fold way algorithm can be performed in either integer or continuous time [4]. In bc
cases the time increment issmdomvariable. For the integer—time case, itis a geometrical
distributed random number,

In(r)
At = INT | ——— 1, 5
Ln(l - FJ - ©)
while for continuous time it is exponentially distributed,
In(r)
At = ——. 6
T (6)
Here,
10
[ ===t 12 le i (7)

is the inverse of the average time needed to exit the configuration specifigg}bgnd

r is a uniformly distributed random number @, 1) [3, 4]. For both casesAt is given

in units of MCS. At low temperatures thg's of the dominant classes (those with higt
populations) can be very small, resulting in large typical time increments. For example
T =0.7Tc and|H|/J = 0.2857 the mean time increment is approximately 20 MCS. This
how the algorithm “bypasses” a large number of unsuccessful flip attempts and can inci
the efficiency by several orders of magnitude [4].
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Finally, it is important to note that the standard Metropolis andrttield way algo-
rithms yield identical physical results. They are simply two different implementations
simulating the same dynamics.

3. PARALLELIZATION

3.1. The Parallel Metropolis Algorithm

First, we review the conservative scheme for parallelization of the standard Metrop
algorithm [2]. An obvious way to parallelize the serial Metropolis algorithm is to spatial
decompose the x L lattice intol x | blocks. When it is mapped onto a parallel compute
each processing element (PE) carried anl block of spins. The number of PEBpE,
and the block sizd, are simply related througNpg = (L/1)? (Fig. 1). Here we outline
the algorithmic steps for the continuous-time case. Each PE carries itfoalrtime t.
Initially a spin configuration, corresponding te=0, is chosen, and the time of the first
update is determined by= —In(r), independently on each PE. In our case, the initial cor
figuration iss = 41 for all spins. For clarity, our time unit will be one MCS per PE (MCSP)
during which each PE attempts to update one spin on average. Each PE is responsit
updating theN =12 spins that it carries by iterating the following steps:

Step 1. Select a spin from the block with equal probabilities.

Step 2. (a) If the chosen spin is in the kernel of the block, go to Step 3.
(b) If the chosen spin is on the boundary of the bloekijt until the local simulated
timet of this update becomes less than or equal to the same quantity for the correspor
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FIG.1. Schematic diagram of the spatial decomposition of the system and its mapping onto a parallel mac
HereL =12 and = 4. Each of theNee = (L /1)?> = 9 processing elements (PEs) carifes 16 spins, confined by
solid lines. The spins on the boundary are separated from those in the kernel by dashed lines.
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neighboring PE(s) (for our model on a square lattice, 2 PEs for corner spins, one
otherwise), then proceed to Step 3.

Step 3. Update the state of the spin using the same probabilities as those in the star
serial algorithm [Eq. (2)].

Step 4. Determine the time of the next update by using tbeal time increment
At =—In(r), wherer is a uniformly distributed random number on (0, 1).

With reliable random number generators (an independent one on each PE), and L
a continuous probability density (exponential) for the time increments, the probability
equal-time nearest-neighbor updates is of measure zero. Thgiled barrier synchro-
nization is necessary among the PEs to preserve the uniqueness of the simulated traje
provided the same set of random seeds is used initially. The algorithm is obviously
from deadlock, since in the worst-case scenario the PE with the minimum local tim
able to make progress. It is clear from the abasgnchronouslgorithm that at any given
(wall clock) moment, different PEs have different local simulated times. The “wait unt
directive in Step 2., however, ensures that the information passed between neighborin
does not violate causality. This can be seen from the following example. Suppose that
is currently updating spig, which is on the boundary of its block (Fig. 1). This update i
possible if the local update time on PEA,is not larger than that on PES, The update is
also necessarily correct singeis guaranteed to be in the same state that it wastiy @his
is so because updates for PE5 are forbidden by the “wait until” directive tgfimxomes
larger thart,.

The above asynchronous algorithm is suitable for a continuous-time update scheme
it can cause inconsistency when integer time is used. Then, explicit barrier synchroniz:
should be incorporated (synchronous algorithm) to treat equal-time spin-flip trials of neal
neighbor spins without ambiguity, and to ensure the reproducibility of a simulated p:
provided the same set of random seeds is used. However, these (independent) ne
neighbor, equal-time events violate detailed balance [with respect to the Hamiltonian
and are unprecedented in the corresponding serial algorithm. Thus, we conclude that
faithful to the original kinetic Ising model, one must employ ttantinuous-timaipdate
scheme. Other, more general cellular automata may tolerate nearest-neighbor, equa
updates, since in such cases the microscopic update rates are not necessarily relz
ana priori known equilibrium probability distribution, and the corresponding equal-tin
events may very well represent the real physical behavior. Also note that frequent ba
synchronization can be very “expensive” on a distributed-memory architecture, such a
T3E, where each PE executes the code completely independently of all other PEs.
is especially true for Monte Carlo algorithms, in which the core of the update routine
extremely simple and the time a PE spends at a barrier waiting for the others can e
exceed the time it is active.

3.2. The “Shielded” Parallel n-Fold Way Algorithm

A natural idea for parallelizing the-fold way algorithm is to employ the same spatia
decomposition as that for the parallel Metropolis algorithm, and to apply the serial reject
free update scheme directly on each block. However, one cannot simply run a copy o
serialn-fold way algorithm on each PE: due to the nearest-neighbor interaction, the Ic
time increments and the class populations depend not only on the spin values in the |
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carried by that PE, but also on the states of the spins located on the adjacent bounda
the neighboring PEs. By updating a spin on the boundary of a block, the updating PE ¢
corrupt the simulated history of a neighboring block, if the local time of the latter is alree
ahead of that of the former. Thus, the neighboring PE would need to perform a rollb
procedure to recover from the simulation of a series of “false” events. It is easy to see
this rollback might generate a cascade of rollbacks in other PEs, making the implement
rather difficult. Moreover, it is unclear how frequently such rollbacks would occur, and h
far they would go back in time and propagate through space.

Lubachevsky proposed a way to avoid rollbacks by modifying the original algorithm [
In each block, an additional class which contains the spins on the boundary is defined
weight of this class is the number of boundary spks= 4(I — 1), which does not change
during the simulation. The originalfold way tabulation of spin classes is only used in th
kernel of the block. Henceé\,, + z}gl ni =N, wherezilg1 n; = N is the number of spins
in the kernel, andN =12 is the total number of spins in a block. Note that the populatic
of the classeg,Np, {n; }12,}, is maintained separately for each block by the correspondi
PE. Once the initial configuration is set and the corresponding local time of first updat
determined, the asynchronous algorithm (with continuous time) consists of the follow
iterated steps performed by each PE:

Step 1. Select a class according to the relative weights, {n; p; }1°,}, and select a spin
from the chosen class with equal probabilities.

Step 2. (a) Ifthe chosen spin is in the kernel, flip it with probability one and go to Step

(b) If the chosen spin belongs to the boundary clagsi until the local simulated
time of this update becomes less than or equal to the same quantity for the correspol
neighboring PE(s). Then the state of this spiayor may notchange: flip it with the usual
Metropolis probability [Eq. (2)] and proceed to Step 3.

Step 3. Update the tabulation of the spin clas$eg??, in the kernel.

Step 4. Determine the time of the next update (in units of MCSP) by usinddbal
time incrementAt = —In(r)/ T's, where

Np + Zilgl N; Pi

I's = N ,

©)

andr is a uniformly distributed random number ¢ 1).

Thanks to the introduction of the class of boundary spins (whichfixad weight),
the neighboring PEs are shielded from each other, since a spin flip on the boundary
block does not affect the tabulation of spin classes in an adjacent block. Hence, just
the standard parallel scheme, the same conservative approach (the “wait until” dire
in Step 2) ensures that the information passed between PEs is valid and the update
correct.

Again (employing proper synchronization), one can experiment with integer—time
dates. Although in this case time increments are random integers and the probabili
picking two nearest-neighbor spins residing on two adjacent PEs with equal update ti
is small, it is nevertheless nonzero. We have already argued that these (perhaps rare)
have no corresponding analogues in the serial algorithm. Furthermore, the use of bz
synchronization severely degrades performance. Although, for “experimentation” purp
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on the architecture we implemented the integer—time, synchronous algorithm as well |
we will not discuss its performance in detail here.

4. PERFORMANCE

We implemented both the parallel Metropolis and the paraHield way algorithms (as
described in the previous section) on the Cray T3E parallel architecture at the Nati
Energy Research Scientific Computing Center (NERSC). For message passing, we er
the Cray-specific, logically shared, distributed memory access (SHMEM) routines. The
SHMEM library supports communication initiated bpePE, together with remote atomic
memory operations. Without these features, it would be extremely inconvenient to cod
algorithm for stochastic simulation on a distributed memory machine, where the pat
of communication is completely unpredictable. These characteristics clearly outweigt
loss of portability of our code.

One-sided communications, which are the essential ingredient for efficient coding o
stochastic, massively parallel algorithm, have also been implemented in the MPI-2 libt
This library is widely available and supported on various platforms, providing a high deg
of portability. The reason for our choice of the proprietary SHMEM library is simply (ar
paradoxically) that MPI-2 was not yet implemented on the T3E at the time of our cc
development.

To better understand the performance of our implementation we monitored the follov
quantities:

Utilization. This is defined as the fraction of “non-idling” PEs, i.e., the PEs whic
either pick a spin in the kernel or successfully pass the “wait until” directive in Step 2 of
algorithms. Since the routines are asynchronous (the main simulation cycles on each F
not executed in lock-step) it is fairly difficult to measure this ratio. To obtain an estime
we placed explicit barrier synchronization in our code and perforsegérateruns. The
performance was irrelevant for these runs; the only information that we aimed for was
fraction of non-idling PEs in each (now artificially lock-step) main simulation cycle. V
emphasize that the utilization only measures the fraction of PEs that are not idle. It (
not say anything about whether the active PEs are doing anything “useful” in the sens
performing successful updates.

The mean local time incremenit. Although At in the n-fold way algorithm is not
stationary over the course of the metastable decay, its mean carries important inform
about the degree of success by which the algorithm “bypasses” those spin-flip atte
which would be rejected if the Metropolis algorithm were used. For the parallel Metropt
algorithmAt = 1 trivially (In(r) = 1).

PE update rate. This quantity is literally the simulation speed of a PE in units of standa
MCS per PE per second, i.e., MCSP/s. This is an “absolute” measure and in fact deterr
which parallel algorithm should be used for optimal simulation speed. The full update |
of the parallel algorithm is simply (PE update rateNpg. In order to compare directly the
performances of the parallel algorithms to those of their serial counterparts, when the
lattice size was small enough to fit on one PE, we also ran the corresponding serial rou
on one node of the T3E and determined the following measures:

Efficiency. This is the ratio of the PE update rate of the parallel algorithm to the upd
rate of the corresponding serial algorithm using the same full systerh sk both parallel
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algorithms it is proportional to the utilization, and it is related to the communication spe
of the architecture through the fraction of spin-flip attempts in which message passir
needed. For our algorithms, due to the fast communication hardware of the architec
the communication overhead is a small effect compared to the inherent low utilizat
which is a common drawback of conservative parallel methods. For the parédiiel way
algorithm the efficiency is also proportional to the ratio of the typical time increments
the parallel and the corresponding serial routﬁ)ar/ﬂser.

Speedup. This is the ratio of the (full) update rate of the parallel algorithm to the upde
rate of its corresponding serial counterpart, i.e., efficiendype.

Both efficiency and speedup asdativemeasures, and they merely indicate how succes
fully the parallelization of theorrespondingerial algorithm is accomplished. As we shal
see, a parallel code with lower efficiency can outperform one with higher efficiency, «
to the faster “serial” core of the former. For very large systems, direct simulation using
serial algorithms is not possible, due to memory limits. The largest system sizes we ¢
allocate werel =2048 for the serial Metropolis and = 1280 for the seriah-fold way
algorithm. To obtain speedup and efficiency estimates for larger systems we extrapo
the smaller-system update rates of the serial routines.

Before discussing the performance of the “shielded’bld way algorithm, we note
two inherently weak features, which are not related to the otherwise fast communice
hardware of the T3E parallel architecture.

First, as a general guideline, the fewer communications one must execute, the k
the performance of the parallel code. In our case, the probability of picking a spin on
boundary, which will be followed by some kind of communication between neighbori
PEs, is greater than the surface-to-volume rafigy,N = 4(l — 1)/12~4/1. In particular, it
is determined by the relative weights in the modifiefbld way algorithm, which are given
by Np/(Np + z}gl n; pi). With very smallp;’s this ratio can take unfavorably large values
close to unity, leading to more frequent message passing and, more importantly, idli
required by the “wait until” directive.

Second, the typical time increment of the parallel algorithm is smaller than that
the serial algorithm. As mentioned in Section 2, the advantage of the aefoid way
routine lies in the large typical time increments that correspond to the very small flipp
probabilities at low temperatures. However, for the same sets of class-specific flip)
probabilitiesp;, the mean time increments of the “shielded” parallel and saffald way
routines are related as

1 N 0 o Ne N 1 N 1 N 1
_b+2,=1n.p|_k% b kK _b(l ) 9)

A_tser

— — =—+
Aty N Ne N N ' Atse N  Ateer N

This follows from Eq. (8) and implies thattpa, < Atseralways. Thus at very low temper-
atures, wher@tser > 1 /4, Aty is determined almost completely by the block size, rathe
than by thep;'s and the populations of the corresponding classes:

Alpar < 1/4. (10)
We test the scaling of the parallel algorithms with up to 400 PEs. First, the system si:

kept constant, and we divide it into smaller and smaller blocks (Fig. 2). Then, alternativ
we keep the block size fixed and study the scaling for larger and larger systems by incre:
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FIG. 2. Scaling and performance analysis for fixed system ¢ize 512, atT =0.7T. and|H|/J =0.2857,
comparing the parallel-fold way algorithm (open squares) and the parallel Metropolis algorithm (filled square
The lines connecting the data points are merely guides to the eye except in (b), where they represent the
retical prediction of Eq. (9). (a) Utilization. (b) Mean time incremeit, for the paralleh-fold way algorithm.
(c) Update rate (inset: PE update rate in units SfIMCSP/s). (d) Speedup (inset: efficiency).

the number of blocks (Fig. 3). We also carry out experiments with fixed number of PEs
varying block size (Fig. 4) to study in detail the effect of increasing the surface-to-volu
ratio of the blocks. Each of these studies was performd@d=a0.7T. and|H|/J = 0.2857,
where the typical droplet separatidR,, is approximately 32 lattice constants. Finally, with
fixed number of PEs and fixed block size we study the effect of the temperature and mag
field on the performance (Fig. 5), to determine the regime of efficient applications to
particular model system. The results reflect the features discussed in the previous parag

4.1. Scaling with Mg for Fixed System Size

For this series of runs we choose=512 for the total system size and we emplo
Npe=4, 16, 64, and 256 (corresponding te=256, 128 64, and 32, respectively). For
both the paralleh-fold way and the parallel Metropolis algorithm the utilization drops wit
decreasing block size (Fig. 2a). The utilization for théold way routine is significantly
lower than that for Metropolis: the probability of choosing a spin on the boundary is gre:
than the surface-to-volume ratio and then it is ultimately followed by an inquiry of t
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FIG. 3. Scaling and performance analysis for three different block size$4, 128, and 256 for the parallel
n-fold way algorithm (open circles, squares, and triangles, respectively),-ad@8 for the parallel Metropolis
algorithm (filled squares) af =0.7T, and |H|/J =0.2857. The linear system size is=1+/Npe. The lines
connecting the data points are merely guides to the eye exceptin (b), where they represent the theoretical pre
of Eq. (9). (a) Utilization. (b) Mean time incremenit, for the parallein-fold way algorithm. (c) Update rate
(inset: PE update rate in units ofSIBICSP/s). (d) Speedup (inset: efficiency).

local time of the neighbor(s) and possible idling. Further, the typical time increments
decreasing as well (Fig. 2b). Note that for therial n-fold way routine the mean time
increment isAtser=19.9 (Table ). This is the only parameter in Eq. (9) which give:
complete agreement with the measured valueaf,, as shown by the solid curve in

TABLE |
Mean Time Increments (in MCSP) for the Serial and the Paralleln-Fold Way Algorithms
with Different Block Sizesl at T=0.7T,, |H|/J =0.2857

Paralleln-fold way with block sizd Serial
| 16 32 64 128 256 512 1024 b
At 3.7 6.1 9.2 12.6 15.4 17.4 18.5 19.9

2They are approximately independent of the full system kizend Npg.
® The mean time increment for the serial algorithm is approximately independéent of
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FIG. 4. Performance analysis for fixed number of PEsg =64, as a function of the block sizk,for the
paralleln-fold way algorithm (open squares), and for the parallel Metropolis algorithm (filled squaiies) @7 T,
and|H|/J =0.2857. The lines connecting the data points are merely guides to the eye except in (b), where
represent the theoretical prediction of Eq. (9) (a) Utilization. (b) Mean time increméntor the paralleh-fold

way algorithm. (c) Update rate (right scale) and PE update rate (left scale). (d) Speedup (right scale) and effic
(left scale).

Fig. 2b. As a result of these factors, the PE update rate of the panditédl algorithm
drops faster than that of the parallel Metropolis algorithm (Fig. 2c inset). For sufficier
small blocks, the performance of thefold routine actually becomes poorer than that fo
the Metropolis routine, as we shall see in the experiments with fixed number of PEs
varying block size. For both algorithms the scaling is systematicadlysethan linear,
for the reasons explained above (Fig. 2c). In particular, the paraefield way for large
number of PEs (small block siZ¢ cannot scale better thafNpg, since for fixedL the
typical time increment scales @t par < 1 /4~ 1/4/Npg. Although employing mangmall
blocks does result in speedup, the efficiency clearly becomes poorer at the same
(Fig. 2d).

For completeness, we mention that the performance of the integer—time, synchro
n-fold way routine becomes progressively weaker than that of the asynchronous vel
with continuous time for an increasing number of PEs. For example, with 256 PEs it r
2.3 times slower than the continuous-time routine, due to the necessity of explicit bal

synchronizations. It is even slower than the asynchronous Metropolis routine by a fa
of 2.1.



500

KORNISS, NOVOTNY, AND RIKVOLD

1.00 25.0
a b s
(L7, .
o ] : ] ]
0 " 067
g «
=
S 060 08T, 15
E 07T, 07T
[T .
0.40 .
&
AT
.
.
0.20 - 5.0 -
0.15 0.25 0.35 0.45 015 0.25 0.35 0.45
\HIT \HIAT
10 84.0 0.80
C d 8
070
Z o8
= ey 07T
§ 08T %.on‘; 060 e o) 2 &
g g
-
o 0.6 = ., 050 a2
= 7T, . 2 08T =
— = = v -=
B 20z = 040 g
2 ) = 2
o 04 08T = T V7T &
= L 0.30
E - 17T, " " " L 3 L
= 160 = 020 e
i = T
ooz e L
a
o.10
0.0 0.0
] ) 0.00 0
0.15 035 0:4G 515 025 035 045
LHIAT \HAT
FIG. 5.

Performance analysis for three different temperatufes,0.8T,, 0.7T., and 06T, for the parallel
n-fold way algorithm (open circles, squares, and triangles, respectively), an@ 7T, for the parallel Metropolis
algorithm (filled squares) as functions of the magnetic field. We emplgy= 64 andl =128 (L =1024. The
lines connecting the data points are merely guides to the eye. (a) Utilization. (b) Mean time incietéortthe
paralleln-fold way algorithm. Filled circles indicate the theoretical predictions of Eq. (9). (c) Update rate (rig
scale) and PE update rate (left scale). (d) Speedup (right scale) and efficiency (left scale).

4.2. Scaling with Ng for Fixed Block Size

Here we keep the size of the blocks fixed (using three different value64, 128, 256),
while increasing the system size by using larger numbers of REs=4, 16, 64, 256,
and 400). Clearly, the larger the block size, the higher the utilization. Even withlfixieel
utilization monotonically decreases with increasMg:. However, it appears to approach
anonzerovalue for large numbers of PEs (Fig. 3a). As was pointed out in Ref. [2], it s
highly non-trivial mathematical problem to prove that the utilization tends to anonzero ve
as Npg — oo. For practical purposes, given our architecture with 512 nodes this ques
might seem academic, but it truly lies at the heart of this conservative approach to disc
event simulation. Again, the utilization for the parallel Metropolis algorithm significant
exceeds that for the-fold way: for the Metropolis routine with= 128 it is 82% with 400
PEs, while for then-fold way it is only 56%, even fok = 256. With fixed!, the mean time
increments are independent e in the parallein-fold way routine (Fig. 3b). However,
increasing systematically improveat and thus the performance. We find almtisear
scaling of the update rate witpg for both parallel algorithms (Figs. 3c, d). Despite its
relatively low utilization, then-fold way routine clearly outperforms the Metropolis routine
due to its large time increments (partly rejection-free nature).
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Again we note that our implementation of the integer—time synchroneiedd way
algorithm performs rather poorly compared to its asynchronous counterpart: it &ins
times slower than the asynchronoufold way and 13 times slower than the asynchronou:
Metropolis routine witH =128 and 256 PEs.

4.3. Simulation with Fixed Number of PEs and Varying Block Size

Here Npg = 64, which can be regarded as a reasonable number for production runs
increase the block sizé£ 16, 32, 64, 128 256 512 and 1024) and “stretch” the routine
close toits memory limits. For both algorithms the utilization increases with increasing bl
size. This happens faster for the parallel Metropolis routine, for which the utilizationis m
directly related to the surface-to-volume ratio of the blocks (Fig. 4a):#01024 itis 93%
while itis 74% for then-fold way routine. Further, the mean time increment for the parall
n-fold way algorithm systematically approaches that of its serial counterpag,= 19.9
(Fig. 4b and Table I). For largesuch that /4 > Atse, Atpar < Atser, as expected from
Eq. (9). The data are in complete agreement with our theoretical result, given by the
curve. Here the temperature and field are moderate, so that the increasing blokk ¢
allows Aty to “catch up” withAtser. The drawback is that employing large blocks can lea
to excessive memory usage. The PE update rate afi-fioéd way routine withl = 1024
slightly decreases comparedte 512 (Fig. 4c), even though the utilization and the mea
time increment slightly increase. In fatt- 1024 is fairly close to the largest block size we
could allocate in the memory of one node. For very siélk16), the utilization andit
of then-fold way routine are so low that the routine is actually outperformed by the para
Metropolis routine (Fig. 4c).

4.4. Simulation with Fixed Number of PEs and Varying Physical Control Parameters

Here Npg =64 andl = 128 are kept constant while we vary the magnetic field for thre
different temperatures to study the effects of changing the characteristic length and
scales of the simulated system. As expected, the utilization for the Metropolis algori
is unaffectedFig. 5a); the slight increase in the PE update rate at lower fields (Fig. '
or temperatures is due to the fact that for higher rejection rates fewer variables need
updated. The parallel-fold way routine suffers from low utilization at low temperature:
and fields: in a high percentage of the execution time of the main simulation cycle
spin on the boundary is picked. This not only implies necessary communications \
its neighboring PE(s), but possible idling if the local times of the neighboring blocks
behind. Although the time increments increase with decreasing temperature and field,
cannot exceetl/4, as shown in Eg. (10) (Fig. 5b). Nevertheless, even with the bounc
time increments, the paralletfold way routine outperforms the parallel Metropolis routine
(Fig. 5c¢). The drawback of the parallel (partially rejection-fradpld way scheme is the
low efficiency with respect to itserial counterpart (Fig. 5d); for example, Bit=0.6T. and
[H|/J=0.2222 itis only 132%, corresponding to a speedup of onlg.8-or comparison,
the mean time increments of the senafiold way routine are also given in Table 1.

5. APPLICATIONS

As discussed in Section 2, below the equilibrium critical temperature the kinetic Is
system exhibits metastable decay after an instantaneous magnetic field reversal



502 KORNISS, NOVOTNY, AND RIKVOLD

TABLE I
Mean Time Increments (in MCSP) for the Serial and the Parallein-Fold Way Algorithms
for Different Temperatures and Magnetic Fields (Npe = 64,1 = 128)

[HI/J
0.1587 0.2222 0.2857 0.3492 0.4127

T/T. 0.6 Serial — 81.5 61.4 46.4 36.3
Parallel — 23.4 21.4 19.3 17.4

0.7 Serial 33.8 25.4 19.9 16.5 14.3

Parallel 16.8 14.5 12.6 11.1 10.1

0.8 Serial 125 10.4 9.2 8.5 7.9

Parallel 9.2 8.0 7.4 6.9 6.5

|[H| to —|H]|. Using standard droplet theory [10], one can show that a thermally nuclez
domain of the stable phase must reach a critical droplet size, corresponding to a (tempe
and field dependent) critical radil&, before its growth becomes energetically favorable
For systems significantly larger than the typical droplet separdiofwhich decreases in
a nonlinear fashion with increasingl| and T), many droplets of the stable phase forn
and grow until they coalesce and occupy the whole system (multi-droplet (MD) regir
[10, 19]. The parameters we choose correspond to this decay mode. NoR, tkaR,,

in particular,R;/R, — 0 in the|H| — O limit. A quantity of interest is the lifetime of the
metastable phasér), which is defined as the average first-passage time to zero magn
zation. Exploiting the fact that the system is self-averaging in this regime, one may em|
the classical Avrami law for homogeneous systems [20] in two dimensions to obtair
analytical form for the time evolution of the system magnetization [10, 19],

m(t) ~ (Mms — Ms)Pms(t) + Mg, (11)
where
ms(t) = e—('” 2)(t/(x)® (12)

is the volume fraction of the metastable phase, mpdandms are the metastable and the
stable (equilibrium) magnetization, respectively.

For illustration we choose ah = 1024 system al =0.7T; and|H|/J =0.2857, and
we study metastable decay as observed througk b window. Employing different block
sizes b, mimics the effect of choosing different finite (smaller than the system size) ob:s
vation windows in a large system. This is clearly relevant to real experiments and ob
vations, such as those using the magnetooptical Kerr effect [21]. We run our applica
with Npg=16, 64, and 256, directly corresponding to block sibes| =256 128, and
64, respectively. Since the maximum number of PEs available to us is 512<f8R (for
the samel =1024 system) we employ 256 PEs witha 64, and monitor observables for
ab x b block within the 64x 64 subsystem carried by each PE. Even our smallest blo
b =8, is sufficiently large that subcritical fluctuations of sRe: R. ~ 2 are not recorded as
first-passage times to a block magnetization of zero. Together with the global magnetiza
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Eqg. (4) we monitor the individual block magnetizations

b2
1
My = Zs. (13)
i1

Typical time series of these quantities are shown in Fig. 6, where time is measure
units of MCS/spin (MCSS). Recording the first-passage times to zero for at least
escapes, we calculate the mean and the standard deviation of the lifetime (Fig. 7a
construct histograms fd?2,,(t), the probability that the system or block magnetization h
not changed sign by timie(Fig. 7b).

Theaveragdifetime of a finite subsystem, as observed through a finite windoes not
differ significantly from the lifetime of the whole systert{= 1585 MCSS). However,
the statistical properties of the lifetime change not only quantitatively, but also qualitati
with b. Forb much larger than the typical droplet separati® £ 32 lattice constants at
this temperature and field), the time-dependent block magnetization itself is self-averas
the switching process is Gaussian, and consequefjgt) is an error function [10]. While
the average lifetime within a block is unaffected, its standard deviatiptis proportional
to 1/b in two dimensions. Oncbk becomes comparable to or smaller tHap the above
picture is no longer valid and a crossover to a qualitatively different behavior is obsen
For these smaller blocks, the switching within a block is not related to the growth of sev
droplets nucleated within that block, but rather to a single droplet formed within the s¢
block, or to droplets formed elsewhere in the system which propagate across the obs
block. Itis a challenging theoretical problem to describe the switching behavior analytic
in this crossover regime, and work is in progress to accomplish this task. by Bye— 0
limit the coarse-grained approximation (in which the size of the critical droplet is negligik
yields P2,,(t) ~ ¢ms(t) [EQ. (12)], since the probability that the block magnetization he
not switched by time then becomes equal to the volume fraction of the metastable phz
The standard deviation in this limit can be obtained from the probability density of
first-passage time-dPRS,,/dt, yielding o, ~0.1345t) ~ 5812 MCSS. Note, however,
that forb smaller than the diameter of the critical dropleR{2> 4 lattice constants for our
parameters) the above argument (which is based on the coarse-grained picture) isno |
valid, since zero-crossings of the block magnetization are frequently induced by subcri
fluctuations.

Another future application in the MD regime is to study the response to a periodic app
magnetic field, which exhibits highly nontrivial hysteretic behavior [22]. If the half-peric
of the applied field is less than the metastable lifetime the system almost always does
not switch, resulting in a nonzero period-averaged magnetization (“dynamically orde
phase”). On the other hand, when the half-period excéedshe magnetization switches
in almost every half-period and the period-averaged magnetization is zero (“dynamic
disordered phase”). The transition between these two phases is sharp and singular: th
tem exhibits adynamicphase transition, which fits into the general framework of critic:
phenomena and continuous phase transitions [23]. Here there is clearly a need to stud
ing and universality by obtaining the corresponding critical exponents with high accur:
Also in this regime, our parallel algorithm appears to be very efficient for large systems.
plan to implement it with a periodic square-wave shaped applied magnetic field and ¢
out a large-scale finite-size scaling analysis of the dynamic phase transition.
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FIG. 6. Global and block magnetization time series for 10 different realization§ &t0.7T, and
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simulation results, represents Avrami’s law [Egs. (11) and (12)]. (bpFeR56. (c) Forb = 128. (d) Forb = 64.
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PARTIALLY REJECTION-FREE PARALLEL MONTE CARLO 505

1.0 — = 5
60.0 oy
a b 3 b=L=1024
b=256
0.8 ' b=128
E b=t
: b=32
400 .nj-_— 16
~ 0.5 A « b=8 )
=] " Errar funchions
= — “ @ (1}
o T ms’
s 5 1
— =
B =~ 04
20.0
0.2
0.0 0.0 2 N g
0.00 0.05 010 0.15 0 100 200
1/b 1 {MCSS]

FIG. 7. (a) Standard deviation of the first-passage time of the block magnetization to zero (open trian
as a function of the inverse block size/hl The dashed line is merely a guide to the eye. The solid straight lir
represents the theoretical dependenceé afi the standard deviation for large The dotted horizontal line is
theb/R, — 0 limit of the standard deviatioro{ =5812 MCSS) within the coarse-grained approximation. (b
The probability that the block magnetization, observed througkd window, has not changed sign by tirhe
after a sudden magnetic field reversal in a 1824024 Ising system. The solid curves foe 1024 256, and 128
are scaled error functions, given by theory [10] for labg&he dotted curve fob = 8 represents the theoretical
coarse-grainetd/ R, — 0 limit, i.e., the metastable volume fractiap,s(t) [Eq. (12)], given by Avrami’s law. As
expected, it fits the data very well fox (t), where droplet coalescence is unimportant.

6. CONCLUSION

We have studied the performance of the paraikébld way dynamic Monte Carlo al-
gorithm proposed by Lubachevsky [2], in which each PE carrids>ahblock of random
variables. The algorithm was implemented for a two-dimensional kinetic Ising ferromac
undergoing metastable decay, but the parallel scheme is generically applicable to a
range of stochastic cellular automata where discrete events (updates) are Poisson ari

One may clearly ask why notimplement “trivial” or “embarrassing” parallelization whe
one uses the serial algorithm and simply averages over independent parallel runs on ve
processors atthe end. This approach is obviously hard to beat in terms of programming «
and utilization. However, fitting a very large system in the memory of a compuitieout
degrading the performance requires special hardware, e.g., extended cache or disks wi
remote memory access. For example, for the sarfald way algorithm the largest system
we could allocate on one node of the T3E was: 1280, for which the performance (PE
update rate) was approximately 57% of that ofthe 64 case. Even fot =512, in which
case the memory is far from being exhausted, the performance was already degrac
65%, compared to that of the= 64 case. Thus, massive stochastic parallelization provid
a fast alternative to special hardware for simulating very large systems.

To obtain reasonable performance on the T3E distributed-memory parallel architec
and to be faithful to the original dynamics, one must utilize an asynchronous update sct
with continuous time. Then the expensive global barrier synchronizations are avoidec
spin-flip attempts are modeled as independent Poisson arrivals. We analyzed the p
mance of our implementation, which sensitively depends on the block size and the nur
of PEs, as well as on the characteristic length and time scales of the simulated sy:
We found that for large enough block size, the routine outperforms the standard pat
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Metropolis algorithm. For moderately low temperatures it yields high speedups with
spect to the already fast serinifold way algorithm. For example, af =0.7T; and
|H|/J =0.2857, employind = 256 we obtained a speedup of 260 with 400 PEs, and f
| =1024 a speedup of 58 with 64 PEs. Often the system size (possibly large) is spec
and for fixedL, although significantly worse than linear, the speedup is still a monotonice
increasing function of the number of PEs, up to the maximum 256 PEs that we stuc
At the same time, the efficiency is monotonically decreasing, which results in tatgér
CPU time usage to execute the same task with a larger number of PEs. If one has unlir
resources (i.e., no allocation limits) this aspect is not relevant. For most, like us, who t
limited CPU resources on a certain parallel architecture, “optimization” between spee
and efficiency can be important. Our implementation is obviously best suited to simula
large systems.

On the other hand, for very low temperatures, the algorithm does not provide an effic
way to simulate metastable decay. The reason for the relatively narrow regime of effic
implementation lies in the introduction of a special class in tHeld way algorithm
which “shields” the blocks from each other, but significantly decreases the typical ti
increments. The algorithm avoids rollbacks, but pays a large price: it loses the arbitr:
large time increments that are the most important feature of the sefiold way algorithm,
at arbitrarily low temperature and field. To obtain reasonable efficiency compared to
efficiency of the seriah-fold way algorithm, one needs to employ large blocks such th
| /4= Atse, and clearly it is impossible to keep up with very large serial time incremer
by increasind.

One way to preserve the advantage of the origmébld way algorithm in principle
would be to apply it directly on each block (optimistic approach). This would require
complex protocol to correct erroneous computations. Such a rollback procedure w
ensure the correct time ordering of simulated events. This mechanism is not unknow
distributed event simulation [24] and it certainly has some potential. The complexity
such an implementation, however, might carry a tremendous overhead with respect t
very simple and fast serial algorithm for the Ising model. Another possible way to impr¢
efficiency, while avoiding a general rollback procedure, is to consider relaxation [25] wh
might use local speculative computations before scheduling an event [26].
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